Effect of N-Perfluorooctane on Hypoxia/Reoxygenation Injury in Human Umbilical Vein Endothelial Cells.
نویسندگان
چکیده
BACKGROUND This study investigated the effect of n-perfluorooctane (PFC) on hypoxia/reoxygenation (H/R) injury in human umbilical vein endothelial cells (HUVECs). METHODS In this study, the H/R models were prepared by chemical methods (using dithionite solution). The experimental groups included the control group, the PFC group with a culture volume ratio of 10%, the H/R model group, and treatment groups with various doses of PFC + H/R (i.e., 5%, 10%, or 20% PFC by volume). The cell counting kit-8 (CCK-8) method was used to assay cell viability. Colorimetric assays were used to estimate the leakage of lactate dehydrogenase (LDH) in the medium, the levels of intracellular malondialdehyde (MDA) and nitric oxide (NO), and the activity of superoxide dismutase (SOD). Western blot was used to analyze the expression of the apoptosis-related protein cystine aspartate proteolytic enzyme 3 (caspase-3). RESULTS Compared with the control group, every detected index of 10% PFC group had no statistical significance (p > 0.05). Compared with the model group, 10% and 20% PFC treatment groups could increase cell viability A, decrease the content of NO and reduce caspase-3 expression (p < 0.05); Every PFC treatment group could significantly reduce the release of LDH and the contents of MDA, and also increase the activities of SOD (p < 0.01). CONCLUSIONS PFC has a significant protective effect on HUVEC H/R injury, which may be related to the inhibition of oxidative stress and inflammation and further enhance cell antioxidant and anti-apoptotic characteristics.
منابع مشابه
Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway.
BACKGROUND Ischemia-reperfusion injury leads to the activation and endothelial deposition of complement. We investigated whether exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia and/or reoxygenation activates complement and decreases HUVEC-surface expression of the C3 regulatory proteins CD46 and CD55. METHODS AND RESULTS HUVECs were subjected to 0, 12, or 24 hours of hy...
متن کاملIn vitro reoxygenation following hypoxia increases MMP-2 and TIMP-2 secretion by human umbilical vein endothelial cells.
Endothelial cells lining the inner blood vessel walls play a key role in the response to hypoxia, which is frequently encountered in clinical conditions such as myocardial infarction, renal ischemia and cerebral ischemia. In the present study we investigated the effects of hypoxia and hypoxia/reoxygenation on gelatinases (matrix metalloproteinase-2 and -9), their inhibitor (TIMP-2) and activato...
متن کاملα-lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy
α-Lipoic acid (ALA) is known as a powerful antioxidant, which has been reported to have protective effects against various cardiovascular diseases. The present study aimed to determine whether ALA pre- or post-treatment induced protective effects against hypoxia/reoxygenation-induced injury via inhibition of apoptosis and autophagy in human umbilical vein endothelial cells (HUVECs). In order to...
متن کاملDifferential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine.
OBJECTIVES Although in tissue injury following hypoxia/reoxygenation (H/R) an increased endothelial formation of superoxide anions (O(2)(-)) plays an important role, it is still not fully understood which of the potential enzymatic sources of endothelial O(2)(-) are crucially involved. In this study, we particularly examined the activities of NAD(P)H oxidase and xanthine oxidase (XO) after 8 h ...
متن کاملAnti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta Cardiologica Sinica
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2016